Search results for "CFTR potentiator"

showing 2 items of 2 documents

Current development of CFTR potentiators in the last decade

2020

Cystic fibrosis (CF) is a genetic disorder produced by the loss of function of CFTR, a main chloride channel involved in transepithelial salt and water transport. CFTR function can be rescued by small molecules called "potentiators" which increase gating activity of CFTR on epithelial surfaces. High throughput screening (HTS) assays allowed the identification of new chemical entities endowed with potentiator properties, further improved through medicinal chemistry optimization. In this review, the most relevant classes of CFTR potentiators developed in the last decade were explored, focusing on structure-activity relationships (SAR) of the different chemical entities, as a useful tool for t…

congenital hereditary and neonatal diseases and abnormalitiesHigh-throughput screeningGlycineComputational biologyQuinolonesVX-770Aminophenols01 natural sciencesCystic fibrosisCystic fibrosisSmall Molecule LibrariesStructure-Activity Relationship03 medical and health sciencesDrug DiscoverymedicineHumansCFTR potentiatorCFTRLoss function030304 developmental biologyPharmacology0303 health sciencesWater transportbiology010405 organic chemistryChemistryOrganic ChemistryCFTR potentiatorsBiological activityGeneral MedicineTriazolesPotentiatormedicine.diseaseCystic fibrosis transmembrane conductance regulator0104 chemical sciencesCystic fibrosiMutationChloride channelbiology.proteinCystic fibrosis transmembrane conductance regulatorEuropean Journal of Medicinal Chemistry
researchProduct

Evaluation of Fused Pyrrolothiazole Systems as Correctors of Mutant CFTR Protein.

2021

Cystic fibrosis (CF) is a genetic disease caused by mutations that impair the function of the CFTR chloride channel. The most frequent mutation, F508del, causes misfolding and premature degradation of CFTR protein. This defect can be overcome with pharmacological agents named “correctors”. So far, at least three different classes of correctors have been identified based on the additive/synergistic effects that are obtained when compounds of different classes are combined together. The development of class 2 correctors has lagged behind that of compounds belonging to the other classes. It was shown that the efficacy of the prototypical class 2 corrector, the bithiazole corr-4a, could be impr…

Yellow fluorescent proteinProtein FoldingCystic FibrosisMutantPharmaceutical ScienceCystic Fibrosis Transmembrane Conductance RegulatorCarboxamidemedicine.disease_cause01 natural sciencesAnalytical Chemistrychemistry.chemical_compoundMutant ProteinDrug DiscoveryMoietyCFTR potentiatorCFTRchemistry.chemical_classification0303 health sciencesMutationbiologyChemistryChemistry (miscellaneous)Chloride channelMolecular MedicineHumanStereochemistrymedicine.drug_classCFTR correctorArticleF508del-CFTRlcsh:QD241-44103 medical and health scienceslcsh:Organic chemistrymedicineHumansBenzodioxolesPhysical and Theoretical ChemistryThiazoleCystic Fibrosi030304 developmental biology010405 organic chemistryOrganic ChemistryAminoimidazole Carboxamide0104 chemical sciencesThiazolesMutationbiology.proteinMutant ProteinsBenzodioxoleTricyclicMolecules (Basel, Switzerland)
researchProduct